

				Sub	ject	Cod	le: K	COE	2073
Roll No:									

Printed Page: 1 of 3

BTECH (SEM VII) THEORY EXAMINATION 2023-24 MACHINE LEARNING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief. 2 x 10)=20
Q no.	Question	Marks
a.	What is machine learning?	2
b.	What are the steps involved in designing learning system in machine learning?	2
c.	Explain Artificial Neural Network.	2
d.	What do you understand by gradient descent	2
e.	Explain Bayes Classifier.	2
f.	What are the basics of sampling theory?	2
g.	What is mistake bound model of learning?	2
h.	Explain Case based Learning.	2
i.	How do you evaluate the performance of a model based on first-order rules?	2
j.	What is Reinforcement Learning?	2

SECTION B

2.	Attempt any <i>three</i> of the following: $10x 3 =$	30
a.	Explain the Differentiate between Supervised, Unsupervised and Reinforcement	10
	Learning.	
b.	Define the following in decision tree algorithm: (i) Entropy, (ii) Information	10
	gain, (iii)Gini index, (iv) Gain Ratio, (iv)Chi-Square	
c.	Explain Expectation Maximization algorithm.	10
d.	Explain Backpropagation algorithm in artificial neural network (ANN) with	10
	suitable example.	
e.	Explain the concept of hypothesis space search in the context of machine	10
	learning. How does the choice of hypothesis space impact the learning process?	

SECTION C

Provide examples to illustrate the significance of hypothesis space search.

3.	Attempt any <i>one</i> part of the following:	10
a.	Explain the concept of inductive bias in machine learning, and provide an	10
	example to illustrate how it influences the learning process.	
b.	Explain the Candidate Elimination algorithm in machine learning and provide a	10
	step-by-step solution for a hypothetical scenario.	

4	4. Attempt	any <i>one</i> part of the following:	10x 1 = 10

a.	What is the difference between forward propagation and backward propagation	10
	in neural networks explain weight calculation for forward pass network?	
b.	Consider a single-layer neural network with one input neuron, one hidden	10
	neuron, and one output neuron. The activation function used is the sigmoid	
	function. The network is trained to learn the XOR function.	
	Input layer: One neuron	
	 Hidden layer: One neuron with a sigmoid activation function 	

				Sub	ject	Cod	le: K	COE	073
Roll No:									

BTECH (SEM VII) THEORY EXAMINATION 2023-24 MACHINE LEARNING

TIME: 3 HRS M.MARKS: 100

Output layer: One ne	euron with a sigmoid activation	on function
Input	Output	
0	0	
1	1	
0	1	
1	0	

Weights and Biases (Initial Values):

- Weight between input and hidden layer: wih 0.5
- Bias at the hidden layer: *bh*=0
- Weight between hidden and output layer: who=-0.5
- Bias at the output layer: bo=0

Learning Rate: 0.1

Perform one iteration of training using the given data and update the weights and biases.

5. Attempt any *one* part of the following:

10x 1 = 10

Printed Page: 2 of 3

a.	Suppose we have a dataset of weather conditions and corresponding play									
	decisions	(play or not play) as follows:	0						
	Day	Weather	Temperatu	Humidity	Windy	Play	Σ			
			re			9.				
	Day 1	Sunny	Hot	High	False	No				
	Day 2	Sunny	Hot	High	True	No				
	Day 3	Overcast	Hot	High	False	Yes				
	Day 4	Rain	Mild	High	False	Yes				
	Day 5	Rain	Cool	Normal	False	Yes				
	Day 6	Rain	Cool	Normal	True	No				
	Day 7	Overcast	Cool Normal		True Yes					
	Day 8	Sunny	Mild	High	False	No				
	(i)	If the weather i								
	(ii)	If the level of h	umidity is No	rmal & it is w	rindy then the	player should				
		play or not?		201						
b.		here is a rare dis				_	10			
	for this disease has a 99% accuracy rate for both true positives (correctly									
	identifying	g a person with t	he disease) ar	nd true negati	ves (correctly	identifying a				
	person wi	thout the disease	e). If a randor	mly selected 1	person takes	the test and it				
	comes ba	ck positive, who	at is the prol	bability using	g bayes theor	em that they				
		ave the disease?	V -	,	- •	·				

6. Attempt any *one* part of the following:

10x 1 = 10

a.	What is mistake bound model of learning? Explain the concept, algorithm 10	0
	valuation, its benefit and limitation.	
b.	Suppose you have a dataset with the following points in a 2-dimensional space: 10	0
	Data points: (2, 3), (5, 4), (9, 6), (8, 1), (7, 2)	
	nd their corresponding labels are:	

				Printed Page: 3 of 3						
				Sub	ject	Cod	le: K	KOE	2073	
Roll No:										

BTECH (SEM VII) THEORY EXAMINATION 2023-24 MACHINE LEARNING

TIME: 3 HRS M.MARKS: 100

	A, A, B, B. Now, we want to classify a new point $(6, 5)$ u neighbors with $k = 3$.	sing k-nearest	
7.	Attempt any <i>one</i> part of the following:	$10x\ 1 = 10$	
a.	Consider a binary string optimization problem where the goal	is to evolve a 10	

	1 1 1	
a.	Consider a binary string optimization problem where the goal is to evolve a	10
	binary string of length 8 to maximize the number of ones. You decide to use a	
	simple genetic algorithm for this task.	
	(i) Define the representation of an individual in the population.	
	(ii) Specify the initialization step for the genetic algorithm.	
	(iii) Outline the different operations used in genetic algorithm.	
b.	What are the different types of reinforcement? Explain.	10

OP2ADPA 091 210212.85.151 210212.85.151 28.01.2024 33:35:21 210212.85.151